丰田中国董长征谈“造车新势力”竞争:以开放姿态相互学习******
【跨国企业在中国】
编者按:
走进在华跨国企业,听外企老总谈“中国式现代化机遇”、释“经济全球化之道”。
中新网12月15日电题:丰田中国董长征谈“造车新势力”竞争:以开放姿态相互学习
中新财经 葛成
“目前汽车行业正在经历百年一遇的大变革,电动化、智能化也在迅猛发展。我们将以更加开放的姿态,相互学习,力求能为消费者提供更多的选择。”丰田汽车(中国)投资有限公司高级执行副总经理董长征在接受中新财经专访时说。
董长征表示,中国拥有全球竞争最激烈、发展最快速的汽车市场。未来,丰田会在电动化、智能化方面继续发力,与合作伙伴一起,为消费者提供满意的产品。
丰田实现了与中国市场的共同成长
作为日本最大的汽车公司,丰田创立于1933年,早期以制造纺织机械为主,随后快速增加制造汽车业务。
在公司创立的三十多年后,丰田首次进入中国市场。据董长征介绍,丰田在中国的事业活动可追溯至1964年对华出口首批轿车,以及2000年在中国首次生产挂有丰田标志的汽车。
在中国开放的过程中,丰田在华发展进入快车道。2003年,丰田与一汽成立合资公司,并于2004年与广汽成立合资公司。经过近20年的发展,两家公司都在中国市场取得了出众的业绩。
董长征说,借助合作,丰田实现了与中国市场的共同成长。2021年,丰田在华新车销量总计194.4万辆,在全球占比约18%。2022年,丰田在世界500强中排名第13,在全球汽车制造商中位居第2。
面对造车新势力竞争,以更加开放姿态相互学习
目前,汽车行业正在经历百年一遇的大变革。在电动化、智能化的浪潮下,汽车不再以传统的工业产品的形态出现,逐渐融入了互联网、科技等新元素。
董长征表示,丰田也在进一步深化与中国合作伙伴的联合研发和创新合作。2015年,丰田首次在日本以外地区——中国开始HEV的现地研发;2019年,丰田开始联合中国合作伙伴一起成立了研发公司及销售公司,加快氢燃料电池技术在中国的商业化普及和发展。
董长征称,面对造车新势力的迅速发展,丰田将以更加开放的姿态,相互学习,力求能为消费者提供更多的选择。
“比如在电池方面,我们与宁德时代、比亚迪合作,共同开发更具吸引力的电动车产品,推进电动车的普及;在自动驾驶方面,我们加入了百度‘阿波罗计划’,同小马智行、Momenta合作,发挥各自优势,不断完善、发展自动驾驶技术,期待早日实用化。”
在华两家合作伙伴非竞争关系,而是相互补充
随着中国汽车市场逐步成熟,各细分市场不同品牌车型越来越多,不同级别车型间的空隙越来越小。
丰田在与一汽、广汽两家伙伴合作的过程中,难以避免地出现了产品同质化的现象。例如在紧凑级轿车这一级别中,就分别有卡罗拉、雷凌两款轴距相同,大小相似的产品出现。
在谈到与两家合作伙伴的关系时,董长征表示,丰田一直都致力于制造更好的汽车,满足消费者的不同需求。我们同中国合作伙伴一起,根据消费者的需求,提供相应的产品。二者并非竞争关系,而是相互补充的。
“当前,面对全球范围的芯片不足、原材料涨价等情况,丰田会全力克服困难。未来,丰田将继续以开放合作的姿态与中国伙伴一起,为中国更加美好的未来社会建设做出贡献。”董长征说。(完)
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |